DAN'S ONE-DAY CALCULUS LECTURE

Prerequisites

Slope, area, functions, inverses.

Derivatives

The <u>slope</u> at any point of a function. Symbol: f'(x)Ex.: Let $f(x) = x^2$. Graph this. (Like a a roller coaster-track; use eraser as car.) Q: At each x-value, what is the slope? x -2 -1 0 1 2slope -4 -2 0 2 4So: f'(x) = 2x

Integrals

The <u>area</u> up to a given point of a function. Symbol: $\int f(x) Ex$.: Let f(x) = 2x. Graph this. (Growing business income, or drag racer velocity/distance.) Q: At each x-value, what is the area? (A=½w)

х	0	1	2	3
area	0	1	4	9
So: $\int f(x) = x^2$.				

Fundamental Theorem of Calculus

Derivatives (slopes) and integrals (areas) are inverses.

More Detail

- (1) Precisely calculate slopes instead of guessing them (using "limit" concept)
- (2) Quickly calculate slope & integral functions instead of graphing points.

