DAN'S ONE-DAY CALCULUS LECTURE

Prerequisites

Slope, area, functions, inverses.

Derivatives

The slope at any point of a function. Symbol: $f^{\prime}(x)$
Ex.: Let $f(x)=x^{2}$. Graph this.
(Like a a roller coaster-track; use eraser as car.)
Q : At each x-value, what is the slope?
$\begin{array}{llllll}x & -2 & -1 & 0 & 1 & 2\end{array}$
$\begin{array}{llllll}\text { slope } & -4 & -2 & 0 & 2 & 4\end{array}$
So: $f^{\prime}(x)=2 x$

Integrals
The area up to a given point of a function. Symbol: $\mathrm{If}(\mathrm{x})$
Ex.: Let $f(x)=2 x$. Graph this.
(Growing business income, or drag racer velocity/distance.)
Q : At each x-value, what is the area? $(A=1 / 2 l w)$

$$
\begin{array}{lllll}
x & 0 & 1 & 2 & 3
\end{array}
$$

So: $\int f(x)=x^{2}$.

Fundamental Theorem of Calculus

Derivatives (slopes) and integrals (areas) are inverses.

More Detail

(1) Precisely calculate slopes instead of guessing them (using "limit" concept)
(2) Quickly calculate slope \& integral functions instead of graphing points.

